ArXiv Domain 2025-10-11
数据来源:ArXiv Domain
LLM Domain Papers1. Atlas-free Brain Network TransformerCurrent atlas-based approaches to brain network analysis rely heavily on standardized anatomical or connectivity-driven brain atlases. However, these fixed atlases often introduce significant limitations, such as spatial misalignment across individuals, functional heterogeneity within predefined regions, and atlas-selection biases, collectively undermining the reliability and interpretability of the derived brain network ...
ArXiv Domain 2025-10-12
数据来源:ArXiv Domain
LLM Domain Papers1. Atlas-free Brain Network TransformerCurrent atlas-based approaches to brain network analysis rely heavily on standardized anatomical or connectivity-driven brain atlases. However, these fixed atlases often introduce significant limitations, such as spatial misalignment across individuals, functional heterogeneity within predefined regions, and atlas-selection biases, collectively undermining the reliability and interpretability of the derived brain network ...
HuggingFace Papers 2025-08-09
数据来源:HuggingFace Papers
Latest Papers1. On the Generalization of SFT: A Reinforcement Learning Perspective with Reward RectificationWe present a simple yet theoretically motivated improvement to Supervised Fine-Tuning (SFT) for the Large Language Model (LLM), addressing its limited generalization compared to reinforcement learning (RL). Through mathematical analysis, we reveal that standard SFT gradients implicitly encode a problematic reward structure that may severely restrict the generaliza ...
HuggingFace Papers 2025-08-10
数据来源:HuggingFace Papers
Latest Papers1. On the Generalization of SFT: A Reinforcement Learning Perspective with Reward RectificationWe present a simple yet theoretically motivated improvement to Supervised Fine-Tuning (SFT) for the Large Language Model (LLM), addressing its limited generalization compared to reinforcement learning (RL). Through mathematical analysis, we reveal that standard SFT gradients implicitly encode a problematic reward structure that may severely restrict the generaliza ...
HuggingFace Papers 2025-08-21
数据来源:HuggingFace Papers
Latest Papers1. Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RLRecent advances in large language models (LLMs) and multi-agent systems have demonstrated remarkable capabilities in complex problem-solving tasks such as deep research, vibe coding, and mathematical reasoning. However, most existing multi-agent systems are built upon manual prompt/workflow engineering with sophisticated agent frameworks, making them computatio ...