IA3¶

1.IA3简述¶

IA3(论文:Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning),通过学习向量来对激活层加权进行缩放,从而获得更强的性能,同时仅引入相对少量的新参数,如下图左边所示,它的诞生背景是为了改进 LoRA。

1

为了使微调更有效,IA3(通过抑制和放大内部激活注入适配器)使用学习向量重新调整内部激活。 这些学习到的向量被注入到典型的基于transformer的架构中的attention和feedforward模块中。 原始权重保持冻结,这些学习到的向量是微调期间唯一可训练的参数。 与学习 LoRA 更新低秩权重矩阵不同,处理学习向量可以使可训练参数的数量少得多。

与 LoRA 类似,IA3 具有许多相同的优点:

  • IA3 通过大幅减少可训练参数的数量,使微调更加高效。对于 T0 模型,使用 IA3 只有大约 0.01% 的可训练参数,而使用 LoRA 有 > 0.1% 的可训练参数。
  • 原始的预训练权重保持冻结状态,这意味着可以拥有多个轻量级、便携式 IA3 模型,用于在其之上构建的各种下游任务。
  • 使用 IA3 微调的模型的性能与完全微调的模型的性能相当。
  • IA3 不会增加任何推理延迟,因为适配器(adapter)权重可以与基础模型合并。

原则上,IA3 可以应用于神经网络中权重矩阵的任何子集,以减少可训练参数的数量。 根据作者的实现,IA3 权重被添加到 Transformer 模型的 key, value 和 feedforward 层。 给定注入 IA3 参数的目标层,可训练参数的数量可以根据权重矩阵的大小确定。

2.IA3微调实战¶

与 PEFT 支持的其他方法一样,要使用 IA3 微调模型,您只需要以下几步:

  • 实例化基本模型。
  • 创建一个配置 (IA3Config),在其中定义 IA3 特定的参数。
  • 使用 get_peft_model() 包装基础模型以获得可训练的 PeftModel。
  • 像平常训练基础模型一样训练 PeftModel。

2.1 引入库¶

In [ ]:
from transformers import AutoModelForCausalLM

from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, IA3Config, TaskType

import torch
from datasets import load_dataset
import os
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from transformers import default_data_collator, get_linear_schedule_with_warmup
from tqdm import tqdm
from datasets import load_dataset

2.2 创建 IA3 微调方法对应的配置¶

In [ ]:
device = "cuda"

model_name_or_path = "/data/nfs/llm/model/bloomz-560m"
tokenizer_name_or_path = "/data/nfs/llm/model/bloomz-560m"


peft_config = IA3Config(task_type=TaskType.CAUSAL_LM,
                        target_modules=["query_key_value", "mlp.dense_4h_to_h"],
                        inference_mode=False, 
                        feedforward_modules=["mlp.dense_4h_to_h"])



dataset_name = "twitter_complaints"
checkpoint_name = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt".replace("/", "_")
text_column = "Tweet text"
label_column = "text_label"
max_length = 64
lr = 3e-2
num_epochs = 10
batch_size = 8
/home/guodong.li/virtual-venv/peft-venv-py310-cu117/lib/python3.10/site-packages/tqdm/auto.py:21:TqdmWarning:IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
[2023-07-22 15:47:42,177] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)

参数说明:

  • task_type:指定任务类型。如:条件生成任务(SEQ_2_SEQ_LM),因果语言建模(CAUSAL_LM)等。
  • inference_mode:是否在推理模式下使用Peft模型。
  • target_modules:要替换为 IA3 的模块名称列表或模块名称的正则表达式,例如,注意力块。在 PEFT 中支持的模型中默认的模块名如下所示:
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING = {
    "t5": ["k", "v", "wo"],
    "mt5": ["k", "v", "wi_1"],
    "gpt2": ["c_attn", "mlp.c_proj"],
    "bloom": ["query_key_value", "mlp.dense_4h_to_h"],
    "roberta": ["key", "value", "output.dense"],
    "opt": ["q_proj", "k_proj", "fc2"],
    "gptj": ["q_proj", "v_proj", "fc_out"],
    "gpt_neox": ["query_key_value", "dense_4h_to_h"],
    "gpt_neo": ["q_proj", "v_proj", "c_proj"],
    "bart": ["q_proj", "v_proj", "fc2"],
    "gpt_bigcode": ["c_attn", "mlp.c_proj"],
    "llama": ["k_proj", "v_proj", "down_proj"],
    "bert": ["key", "value", "output.dense"],
    "deberta-v2": ["key_proj", "value_proj", "output.dense"],
    "deberta": ["in_proj", "output.dense"],
}
  • feedforward_modules:target_modules 中被视为前馈(feedforward)层的模块名称列表或模块名称的正则表达式。虽然学习向量与注意力块的输出激活相乘,但向量与经典前馈层的输入相乘。在 PEFT 中支持的模型中默认的前馈层模块名如下所示:
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING = {
    "t5": ["wo"],
    "mt5": [],
    "gpt2": ["mlp.c_proj"],
    "bloom": ["mlp.dense_4h_to_h"],
    "roberta": ["output.dense"],
    "opt": ["fc2"],
    "gptj": ["fc_out"],
    "gpt_neox": ["dense_4h_to_h"],
    "gpt_neo": ["c_proj"],
    "bart": ["fc2"],
    "gpt_bigcode": ["mlp.c_proj"],
    "llama": ["down_proj"],
    "bert": ["output.dense"],
    "deberta-v2": ["output.dense"],
    "deberta": ["output.dense"],
}
  • module_to_save:除了 IA3 层之外要设置为可训练并保存在最终检查点中的模块列表。这些通常包括模型的自定义头(head),该头是为微调任务随机初始化的。例如,在序列分类或Token分类任务中,最后一层classifier/score是随机初始化的,因此需要可训练和保存。
In [ ]:
from datasets import load_dataset

# dataset = load_dataset("ought/raft", dataset_name)
dataset = load_dataset("/home/guodong.li/data/peft/raft/raft.py", dataset_name, cache_dir="/home/guodong.li/data/peft/data")

classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names]
print(classes)
dataset = dataset.map(
    lambda x: {"text_label": [classes[label] for label in x["Label"]]},
    batched=True,
    num_proc=1,
)
print(dataset)
dataset["train"][0]
Found cached dataset raft (/home/guodong.li/data/peft/data/raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84)
100%|██████████| 2/2 [00:00<00:00, 732.82it/s]
Loading cached processed dataset at /home/guodong.li/data/peft/data/raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84/cache-0e20fff6b1d898ca.arrow
Loading cached processed dataset at /home/guodong.li/data/peft/data/raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84/cache-8d14a62b8a688c19.arrow
['Unlabeled', 'complaint', 'no complaint']
DatasetDict({
    train:Dataset({
        features:['Tweet text', 'ID', 'Label', 'text_label'],
        num_rows:50
    })
    test:Dataset({
        features:['Tweet text', 'ID', 'Label', 'text_label'],
        num_rows:3399
    })
})
Out[ ]:
{'Tweet text':'@HMRCcustomers No this is my first job',
 'ID':0,
 'Label':2,
 'text_label':'no complaint'}
In [ ]:
# data preprocessing
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id
target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes])
print("target_max_length:", target_max_length)


def preprocess_function(examples):
    batch_size = len(examples[text_column])
    inputs = [f"{text_column} :{x} Label :" for x in examples[text_column]]
    targets = [str(x) for x in examples[label_column]]
    model_inputs = tokenizer(inputs)
    labels = tokenizer(targets)
    for i in range(batch_size):
        sample_input_ids = model_inputs["input_ids"][i]
        label_input_ids = labels["input_ids"][i] + [tokenizer.pad_token_id]
        # print(i, sample_input_ids, label_input_ids)
        model_inputs["input_ids"][i] = sample_input_ids + label_input_ids
        labels["input_ids"][i] = [-100] * len(sample_input_ids) + label_input_ids
        model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i])
    # print(model_inputs)
    for i in range(batch_size):
        sample_input_ids = model_inputs["input_ids"][i]
        label_input_ids = labels["input_ids"][i]
        model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * (
            max_length - len(sample_input_ids)
        ) + sample_input_ids
        model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[
            "attention_mask"
        ][i]
        labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids
        model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length])
        model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length])
        labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length])
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs


processed_datasets = dataset.map(
    preprocess_function,
    batched=True,
    num_proc=1,
    remove_columns=dataset["train"].column_names,
    load_from_cache_file=False,
    desc="Running tokenizer on dataset",
)

train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["train"]


train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
target_max_length:3
                                                                                          
In [ ]:
def test_preprocess_function(examples):
    batch_size = len(examples[text_column])
    inputs = [f"{text_column} :{x} Label :" for x in examples[text_column]]
    model_inputs = tokenizer(inputs)
    # print(model_inputs)
    for i in range(batch_size):
        sample_input_ids = model_inputs["input_ids"][i]
        model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * (max_length - len(sample_input_ids)) + sample_input_ids
        model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs["attention_mask"][i]
        
        model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length])
        model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length])
    return model_inputs


test_dataset = dataset["test"].map(
    test_preprocess_function,
    batched=True,
    num_proc=1,
    remove_columns=dataset["train"].column_names,
    load_from_cache_file=False,
    desc="Running tokenizer on dataset",
)

test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
next(iter(test_dataloader))
                                                                                           
Out[ ]:
{'input_ids':tensor([[     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
          227985,   5484,    915,   2566,  74757,  64626,  12384,  44639,    613,
           52282,   2670,  79920,   3344,   1002,    368,  17646,  14472,   8348,
             664,    718,      4,  19036,     17,  31849,     17,   6312,     76,
              44,  62470,     56,     91,     50,  14839,     21,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3, 227985,   5484,    915,    405, 187059,
            2256,    664,   2550,  18833,  18607, 162467,      4,   1387,   6199,
            3291,  23405,    613,   4657,  17082,    566,   3432,    368,  78851,
            1185,  61273,  23181,   1553,  15596,    212, 116057,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3, 227985,   5484,
             915,  39762,   2566,  22253,   6201,  75701,     15,    632,    718,
            5840,  10006,   6201,  18881,    427,   3804,  19528,    267, 158974,
            1320,    368,  10029,    632,  49666,     92,     34,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3, 227985,   5484,    915,   2566, 104565,   8695,   2089,   6140,
          109676,  99579,   1369,    512,    368,   4570,     54,    632,    368,
            1503, 241485, 132226,     15,    982,    727,   1152,  18100,    861,
           32596,  77597, 168154,   1306, 132226,   4346,  87843,     17, 130462,
             364,  32923,     89,     53,   8309,     20,     75,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3, 227985,   5484,    915,   2566,
           14173,   2960,  29906,    387,  20706,  49337,   1369,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3, 227985,   5484,    915,   2566, 219553,  45736,
           36876,   1713,     72,    707, 187205,  13002, 177324,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3, 227985,   5484,    915,   2566, 233938,  28518,  13716,
             427,  28146,   1119,  17918,     17, 236706,    368, 214997,   7555,
           48659,   5276,  21600,    343,     17,  51416,  22403,    318,   1531,
            1306,   1130,  20934,    567, 101161, 184849,  87843,     17,   1594,
           15231,   2052,  16642,     20,   7180,     80,     26,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
          227985,   5484,    915,   2566,     80,   2068,    479,   2566,     80,
            1376,    878, 147587,   3904,    632,    368,   6084,  65673,  78851,
           11736,  15527,  19082,  33151,    461,     17,  45575,  17887,    632,
            5219,  14216,  68870,   5967,   1841,   4346,  87843,     17,   1594,
           14512,     27,     71,   8184,     19,    290,  63748,  77658,    915,
             210]]),
 'attention_mask':tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}

2.3 通过调用 get_peft_model 方法包装基础的 Transformer 模型¶

In [ ]:
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)

通过 print_trainable_parameters 方法可以查看到 IA3 可训练参数的数量(仅为172,032)以及占比(仅为0.0307%)。

In [ ]:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
trainable params:172,032 || all params:559,386,624 || trainable%:0.0307536849504646
In [ ]:
model
Out[ ]:
PeftModelForCausalLM(
  (base_model):IA3Model(
    (model):BloomForCausalLM(
      (transformer):BloomModel(
        (word_embeddings):Embedding(250880, 1024)
        (word_embeddings_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (h):ModuleList(
          (0):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (1):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (2):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (3):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (4):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (5):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (6):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (7):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (8):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (9):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (10):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (11):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (12):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (13):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (14):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (15):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (16):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (17):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (18):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (19):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (20):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (21):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (22):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
          (23):BloomBlock(
            (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (self_attention):BloomAttention(
              (query_key_value):Linear(
                in_features=1024, out_features=3072, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 3072x1])
              )
              (dense):Linear(in_features=1024, out_features=1024, bias=True)
              (attention_dropout):Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp):BloomMLP(
              (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
              (gelu_impl):BloomGelu()
              (dense_4h_to_h):Linear(
                in_features=4096, out_features=1024, bias=True
                (ia3_l):ParameterDict(  (default):Parameter containing:[torch.FloatTensor of size 1x4096])
              )
            )
          )
        )
        (ln_f):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
      (lm_head):Linear(in_features=1024, out_features=250880, bias=False)
    )
  )
)
In [ ]:
model.peft_config
Out[ ]:
{'default':IA3Config(peft_type=<PeftType.IA3:'IA3'>, auto_mapping=None, base_model_name_or_path='/data/nfs/llm/model/bloomz-560m', revision=None, task_type=<TaskType.CAUSAL_LM:'CAUSAL_LM'>, inference_mode=False, target_modules=['query_key_value', 'mlp.dense_4h_to_h'], feedforward_modules=['mlp.dense_4h_to_h'], fan_in_fan_out=False, modules_to_save=None, init_ia3_weights=True)}

2.4 模型训练¶

模型训练的其余部分均无需更改,当模型训练完成之后,保存高效微调部分的模型权重以供模型推理即可。

In [ ]:
# model
# optimizer and lr scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=0,
    num_training_steps=(len(train_dataloader) * num_epochs),
)
In [ ]:
# training and evaluation
model = model.to(device)

for epoch in range(num_epochs):
    model.train()
    total_loss = 0
    for step, batch in enumerate(tqdm(train_dataloader)):
        batch = {k: v.to(device) for k, v in batch.items()}
        #         print(batch)
        #         print(batch["input_ids"].shape)
        outputs = model(**batch)
        loss = outputs.loss
        total_loss += loss.detach().float()
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()

    model.eval()
    eval_loss = 0
    eval_preds = []
    for step, batch in enumerate(tqdm(eval_dataloader)):
        batch = {k: v.to(device) for k, v in batch.items()}
        with torch.no_grad():
            outputs = model(**batch)
        loss = outputs.loss
        eval_loss += loss.detach().float()
        eval_preds.extend(
            tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
        )

    eval_epoch_loss = eval_loss / len(eval_dataloader)
    eval_ppl = torch.exp(eval_epoch_loss)
    train_epoch_loss = total_loss / len(train_dataloader)
    train_ppl = torch.exp(train_epoch_loss)
    print(f"{epoch=}:{train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
100%|██████████| 7/7 [00:01<00:00,  5.03it/s]
100%|██████████| 7/7 [00:00<00:00, 22.78it/s]
epoch=0:train_ppl=tensor(2.4646e+10, device='cuda:0') train_epoch_loss=tensor(23.9279, device='cuda:0') eval_ppl=tensor(195.1290, device='cuda:0') eval_epoch_loss=tensor(5.2737, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 11.21it/s]
100%|██████████| 7/7 [00:00<00:00, 23.23it/s]
epoch=1:train_ppl=tensor(112.6432, device='cuda:0') train_epoch_loss=tensor(4.7242, device='cuda:0') eval_ppl=tensor(46.6624, device='cuda:0') eval_epoch_loss=tensor(3.8429, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 10.88it/s]
100%|██████████| 7/7 [00:00<00:00, 22.53it/s]
epoch=2:train_ppl=tensor(37.6138, device='cuda:0') train_epoch_loss=tensor(3.6274, device='cuda:0') eval_ppl=tensor(21.8593, device='cuda:0') eval_epoch_loss=tensor(3.0846, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 11.28it/s]
100%|██████████| 7/7 [00:00<00:00, 23.16it/s]
epoch=3:train_ppl=tensor(17.3817, device='cuda:0') train_epoch_loss=tensor(2.8554, device='cuda:0') eval_ppl=tensor(9.3968, device='cuda:0') eval_epoch_loss=tensor(2.2404, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 11.34it/s]
100%|██████████| 7/7 [00:00<00:00, 22.91it/s]
epoch=4:train_ppl=tensor(6.2920, device='cuda:0') train_epoch_loss=tensor(1.8393, device='cuda:0') eval_ppl=tensor(3.8994, device='cuda:0') eval_epoch_loss=tensor(1.3608, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 11.29it/s]
100%|██████████| 7/7 [00:00<00:00, 23.15it/s]
epoch=5:train_ppl=tensor(2.7512, device='cuda:0') train_epoch_loss=tensor(1.0120, device='cuda:0') eval_ppl=tensor(1.8104, device='cuda:0') eval_epoch_loss=tensor(0.5936, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 11.31it/s]
100%|██████████| 7/7 [00:00<00:00, 23.19it/s]
epoch=6:train_ppl=tensor(1.5378, device='cuda:0') train_epoch_loss=tensor(0.4303, device='cuda:0') eval_ppl=tensor(1.2499, device='cuda:0') eval_epoch_loss=tensor(0.2231, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 11.29it/s]
100%|██████████| 7/7 [00:00<00:00, 22.97it/s]
epoch=7:train_ppl=tensor(1.1984, device='cuda:0') train_epoch_loss=tensor(0.1810, device='cuda:0') eval_ppl=tensor(1.1350, device='cuda:0') eval_epoch_loss=tensor(0.1267, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 10.71it/s]
100%|██████████| 7/7 [00:00<00:00, 23.24it/s]
epoch=8:train_ppl=tensor(1.1170, device='cuda:0') train_epoch_loss=tensor(0.1106, device='cuda:0') eval_ppl=tensor(1.0947, device='cuda:0') eval_epoch_loss=tensor(0.0905, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00, 11.29it/s]
100%|██████████| 7/7 [00:00<00:00, 22.97it/s]
epoch=9:train_ppl=tensor(1.0917, device='cuda:0') train_epoch_loss=tensor(0.0877, device='cuda:0') eval_ppl=tensor(1.0843, device='cuda:0') eval_epoch_loss=tensor(0.0809, device='cuda:0')

In [ ]:
# 模型评估
model.eval()
i = 16
inputs = tokenizer(f'{text_column} :{dataset["test"][i]["Tweet text"]} Label :', return_tensors="pt")
print(dataset["test"][i]["Tweet text"])
print(inputs)

with torch.no_grad():
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = model.generate(
        input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3
    )
    print(outputs)
    print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
Hey @nytimes your link to cancel my subscription isn't working and nobody is answering the chat. Please don't play that kind of stupid game.
{'input_ids':tensor([[227985,   5484,    915,  54078,   2566,   7782,  24502,   2632,   8989,
            427,  36992,   2670, 140711,  21994,  10789,    530,  88399,    632,
         183542,    368,  44799,     17,  29901,   5926,   7229,    861,  11596,
            461,  78851,  14775,     17,  77658,    915,    210]]), 'attention_mask':tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
tensor([[227985,   5484,    915,  54078,   2566,   7782,  24502,   2632,   8989,
            427,  36992,   2670, 140711,  21994,  10789,    530,  88399,    632,
         183542,    368,  44799,     17,  29901,   5926,   7229,    861,  11596,
            461,  78851,  14775,     17,  77658,    915,    210,  16449,   5952,
              3]], device='cuda:0')
["Tweet text :Hey @nytimes your link to cancel my subscription isn't working and nobody is answering the chat. Please don't play that kind of stupid game. Label :complaint"]
In [ ]:
# saving model
peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
print("model_output:", peft_model_id)
model.save_pretrained(peft_model_id)
model_output:/data/nfs/llm/model/bloomz-560m_IA3_CAUSAL_LM

输出的模型权重文件如下所示:

/data/nfs/llm/model/bloomz-560m_IA3_CAUSAL_LM
├── [ 398]  adapter_config.json
├── [689K]  adapter_model.bin
└── [ 129]  README.md

0 directories, 3 files

注意:这里只会保存经过训练的增量 PEFT 权重。其中,adapter_config.json`` 为 IA3 配置文件;adapter_model.bin`` 为 IA3 权重文件。

In [ ]:
ckpt = f"{peft_model_id}/adapter_model.bin"
!du -h $ckpt
print("--------------")
!tree -h $peft_model_id
huggingface/tokenizers:The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
692K	/data/nfs/llm/model/bloomz-560m_IA3_CAUSAL_LM/adapter_model.bin
--------------
huggingface/tokenizers:The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
/data/nfs/llm/model/bloomz-560m_IA3_CAUSAL_LM
├── [ 398]  adapter_config.json
├── [689K]  adapter_model.bin
└── [ 129]  README.md

0 directories, 3 files

2.5 加载微调后的权重文件进行推理¶

In [ ]:
from peft import PeftModel, PeftConfig

peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
print("model_input:", peft_model_id)

config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
model_input:/data/nfs/llm/model/bloomz-560m_IA3_CAUSAL_LM
In [ ]:
model.to(device)
model.eval()
i = 4
inputs = tokenizer(f'{text_column} :{dataset["test"][i]["Tweet text"]} Label :', return_tensors="pt")
print(dataset["test"][i]["Tweet text"])
print(inputs)

with torch.no_grad():
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = model.generate(
        input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3
    )
    print(outputs)
    print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
@greateranglia Ok thanks...
{'input_ids':tensor([[227985,   5484,    915,   2566,  14173,   2960,  29906,    387,  20706,
          49337,   1369,  77658,    915,    210]]), 'attention_mask':tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
tensor([[227985,   5484,    915,   2566,  14173,   2960,  29906,    387,  20706,
          49337,   1369,  77658,    915,    210,   1936, 106863,      3]],
       device='cuda:0')
['Tweet text :@greateranglia Ok thanks... Label :no complaint']
In [ ]: