P-Tuning¶

1.P-Tuning简述¶

P-Tuning(论文:GPT Understands, Too),该方法将 Prompt 转换为可以学习的 Embedding 层,并用MLP+LSTM的方式来对Prompt Embedding进行一层处理。

1

相比Prefix Tuning,P-Tuning加入的可微的virtual token,但仅限于输入层,没有在每一层都加;另外,virtual token的位置也不一定是前缀,插入的位置是可选的。这里的出发点实际是把传统人工设计模版中的真实token替换成可微的virtual token。

2

经过预训练的LM的词嵌入已经变得高度离散,如果随机初始化virtual token,容易优化到局部最优值,而这些virtual token理论是应该有相关关联的。因此,作者通过实验发现用一个提示编码器(即用一个LSTM+MLP去编码这些virtual token以后,再输入到模型)来编码会收敛更快,效果更好。

2.微调实战¶

2.1 引入库¶

In [ ]:
from transformers import AutoModelForCausalLM
from peft import (
    get_peft_config,
    get_peft_model,
    get_peft_model_state_dict,
    set_peft_model_state_dict,
    PeftType,
    TaskType,
    PromptEncoderConfig,
)

import torch
from datasets import load_dataset
import os
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from transformers import default_data_collator, get_linear_schedule_with_warmup
from tqdm import tqdm
from datasets import load_dataset

2.2 创建 P-Tuning 微调方法对应的配置¶

P-tuning 使用提示编码器(PromptEncoder)来优化提示参数,因此,需要使用如下几个参数初始化 PromptEncoderConfig:

  • task_type:训练的任务类型,如:序列分类(SEQ_CLS),因果语言建模(CAUSAL_LM)等。
  • num_virtual_tokens:虚拟token的数量,换句话说就是提示(prompt)。
  • encoder_hidden_size:编码器的隐藏大小,用于优化提示参数。
  • encoder_reparameterization_type:指定如何重新参数化提示编码器,可选项有:MLP 或 LSTM,默认值为 MLP。

当使用 LSTM 时, 提示编码器结构如下:

(prompt_encoder): ModuleDict(
    (default): PromptEncoder(
      (embedding): Embedding(20, 1024)
      (lstm_head): LSTM(1024, 128, num_layers=2, batch_first=True, bidirectional=True)
      (mlp_head): Sequential(
        (0): Linear(in_features=256, out_features=256, bias=True)
        (1): ReLU()
        (2): Linear(in_features=256, out_features=1024, bias=True)
      )
    )
  )

当使用 MLP 时, 提示编码器结构如下:

(prompt_encoder): ModuleDict(
    (default): PromptEncoder(
      (embedding): Embedding(20, 1024)
      (mlp_head): Sequential(
        (0): Linear(in_features=1024, out_features=128, bias=True)
        (1): ReLU()
        (2): Linear(in_features=128, out_features=128, bias=True)
        (3): ReLU()
        (4): Linear(in_features=128, out_features=1024, bias=True)
      )
    )
  )

PEFT 中的 P-tuning 的提示编码器是基于英伟达的NeMo库中 prompt_encoder.py 进行的重构,源码如下所示。

class PromptEncoder(torch.nn.Module):
    def __init__(self, config):
        super().__init__()
        self.token_dim = config.token_dim
        self.input_size = self.token_dim
        self.output_size = self.token_dim
        self.hidden_size = config.encoder_hidden_size
        self.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules
        self.encoder_type = config.encoder_reparameterization_type

        # 初始化 embedding 层
        self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim)
        if not config.inference_mode:
            # 根据PromptEncoder重参数化类型初始化相应的lstm和mlp
            if self.encoder_type == PromptEncoderReparameterizationType.LSTM:
                lstm_dropout = config.encoder_dropout
                num_layers = config.encoder_num_layers
                # LSTM
                self.lstm_head = torch.nn.LSTM(
                    input_size=self.input_size,
                    hidden_size=self.hidden_size,
                    num_layers=num_layers,
                    dropout=lstm_dropout,
                    bidirectional=True,
                    batch_first=True,
                )

                self.mlp_head = torch.nn.Sequential(
                    torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2),
                    torch.nn.ReLU(),
                    torch.nn.Linear(self.hidden_size * 2, self.output_size),
                )

            elif self.encoder_type == PromptEncoderReparameterizationType.MLP:
                warnings.warn(
                    f"for {self.encoder_type}, the `encoder_num_layers` is ignored. Exactly 2 MLP layers are used."
                )
                layers = [
                    torch.nn.Linear(self.input_size, self.hidden_size),
                    torch.nn.ReLU(),
                    torch.nn.Linear(self.hidden_size, self.hidden_size),
                    torch.nn.ReLU(),
                    torch.nn.Linear(self.hidden_size, self.output_size),
                ]
                self.mlp_head = torch.nn.Sequential(*layers)

            else:
                raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")

    def forward(self, indices):
        input_embeds = self.embedding(indices)
        if self.encoder_type == PromptEncoderReparameterizationType.LSTM:
            output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0])
        elif self.encoder_type == PromptEncoderReparameterizationType.MLP:
            output_embeds = self.mlp_head(input_embeds)
        else:
            raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")

        return output_embeds
In [ ]:
device = "cuda"

model_name_or_path = "/data/nfs/llm/model/bloomz-560m"
tokenizer_name_or_path = "/data/nfs/llm/model/bloomz-560m"

# P-Tuning 配置类 PromptEncoderConfig
peft_config = PromptEncoderConfig(
    task_type=TaskType.CAUSAL_LM, 
    num_virtual_tokens=20, 
    encoder_hidden_size=128
)

dataset_name = "twitter_complaints"
checkpoint_name = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt".replace("/", "_")
text_column = "Tweet text"
label_column = "text_label"
max_length = 64
lr = 3e-2
num_epochs = 10
batch_size = 8
/home/guodong.li/virtual-venv/peft-venv-py310-cu117/lib/python3.10/site-packages/tqdm/auto.py:21:TqdmWarning:IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
[2023-07-19 19:02:06,848] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)
In [ ]:
from datasets import load_dataset

dataset = load_dataset("ought/raft", dataset_name)
# dataset = load_dataset("/home/guodong.li/data/peft/raft/raft.py", dataset_name, cache_dir="/home/guodong.li/data/peft/data")

classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names]
print(classes)
dataset = dataset.map(
    lambda x: {"text_label": [classes[label] for label in x["Label"]]},
    batched=True,
    num_proc=1,
)
print(dataset)
dataset["train"][0]
Found cached dataset raft (/home/guodong.li/data/peft/data/raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84)
100%|██████████| 2/2 [00:00<00:00, 450.13it/s]
Loading cached processed dataset at /home/guodong.li/data/peft/data/raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84/cache-0e20fff6b1d898ca.arrow
Loading cached processed dataset at /home/guodong.li/data/peft/data/raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84/cache-8d14a62b8a688c19.arrow
['Unlabeled', 'complaint', 'no complaint']
DatasetDict({
    train:Dataset({
        features:['Tweet text', 'ID', 'Label', 'text_label'],
        num_rows:50
    })
    test:Dataset({
        features:['Tweet text', 'ID', 'Label', 'text_label'],
        num_rows:3399
    })
})
Out[ ]:
{'Tweet text':'@HMRCcustomers No this is my first job',
 'ID':0,
 'Label':2,
 'text_label':'no complaint'}
In [ ]:
# data preprocessing
# padding_side = "left"
# tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id
target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes])
print("target_max_length:", target_max_length)


def preprocess_function(examples):
    batch_size = len(examples[text_column])
    inputs = [f"{text_column} :{x} Label :" for x in examples[text_column]]
    targets = [str(x) for x in examples[label_column]]
    model_inputs = tokenizer(inputs)
    labels = tokenizer(targets)
    for i in range(batch_size):
        sample_input_ids = model_inputs["input_ids"][i]
        label_input_ids = labels["input_ids"][i] + [tokenizer.pad_token_id]
        # print(i, sample_input_ids, label_input_ids)
        model_inputs["input_ids"][i] = sample_input_ids + label_input_ids
        labels["input_ids"][i] = [-100] * len(sample_input_ids) + label_input_ids
        model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i])
    # print(model_inputs)
    for i in range(batch_size):
        sample_input_ids = model_inputs["input_ids"][i]
        label_input_ids = labels["input_ids"][i]
        model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * (
            max_length - len(sample_input_ids)
        ) + sample_input_ids
        model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[
            "attention_mask"
        ][i]
        labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids
        model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length])
        model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length])
        labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length])
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs


processed_datasets = dataset.map(
    preprocess_function,
    batched=True,
    num_proc=1,
    remove_columns=dataset["train"].column_names,
    load_from_cache_file=False,
    desc="Running tokenizer on dataset",
)

train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["train"]


train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
target_max_length:3
                                                                                          
In [ ]:
def test_preprocess_function(examples):
    batch_size = len(examples[text_column])
    inputs = [f"{text_column} :{x} Label :" for x in examples[text_column]]
    model_inputs = tokenizer(inputs)
    # print(model_inputs)
    for i in range(batch_size):
        sample_input_ids = model_inputs["input_ids"][i]
        model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * (max_length - len(sample_input_ids)) + sample_input_ids
        model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs["attention_mask"][i]
        
        model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length])
        model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length])
    return model_inputs


test_dataset = dataset["test"].map(
    test_preprocess_function,
    batched=True,
    num_proc=1,
    remove_columns=dataset["train"].column_names,
    load_from_cache_file=False,
    desc="Running tokenizer on dataset",
)

test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
next(iter(test_dataloader))
                                                                                           
Out[ ]:
{'input_ids':tensor([[     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
          227985,   5484,    915,   2566,  74757,  64626,  12384,  44639,    613,
           52282,   2670,  79920,   3344,   1002,    368,  17646,  14472,   8348,
             664,    718,      4,  19036,     17,  31849,     17,   6312,     76,
              44,  62470,     56,     91,     50,  14839,     21,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3, 227985,   5484,    915,    405, 187059,
            2256,    664,   2550,  18833,  18607, 162467,      4,   1387,   6199,
            3291,  23405,    613,   4657,  17082,    566,   3432,    368,  78851,
            1185,  61273,  23181,   1553,  15596,    212, 116057,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3, 227985,   5484,
             915,  39762,   2566,  22253,   6201,  75701,     15,    632,    718,
            5840,  10006,   6201,  18881,    427,   3804,  19528,    267, 158974,
            1320,    368,  10029,    632,  49666,     92,     34,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3, 227985,   5484,    915,   2566, 104565,   8695,   2089,   6140,
          109676,  99579,   1369,    512,    368,   4570,     54,    632,    368,
            1503, 241485, 132226,     15,    982,    727,   1152,  18100,    861,
           32596,  77597, 168154,   1306, 132226,   4346,  87843,     17, 130462,
             364,  32923,     89,     53,   8309,     20,     75,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3, 227985,   5484,    915,   2566,
           14173,   2960,  29906,    387,  20706,  49337,   1369,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3, 227985,   5484,    915,   2566, 219553,  45736,
           36876,   1713,     72,    707, 187205,  13002, 177324,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3, 227985,   5484,    915,   2566, 233938,  28518,  13716,
             427,  28146,   1119,  17918,     17, 236706,    368, 214997,   7555,
           48659,   5276,  21600,    343,     17,  51416,  22403,    318,   1531,
            1306,   1130,  20934,    567, 101161, 184849,  87843,     17,   1594,
           15231,   2052,  16642,     20,   7180,     80,     26,  77658,    915,
             210],
         [     3,      3,      3,      3,      3,      3,      3,      3,      3,
               3,      3,      3,      3,      3,      3,      3,      3,      3,
          227985,   5484,    915,   2566,     80,   2068,    479,   2566,     80,
            1376,    878, 147587,   3904,    632,    368,   6084,  65673,  78851,
           11736,  15527,  19082,  33151,    461,     17,  45575,  17887,    632,
            5219,  14216,  68870,   5967,   1841,   4346,  87843,     17,   1594,
           14512,     27,     71,   8184,     19,    290,  63748,  77658,    915,
             210]]),
 'attention_mask':tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}

2.3 调用 get_peft_model 方法包装基础的 Transformer 模型¶

In [ ]:
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)

通过 print_trainable_parameters 方法可以查看可训练参数的数量(仅为300,288)以及占比(仅为0.05366%)。

In [ ]:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
trainable params:300,288 || all params:559,514,880 || trainable%:0.05366935013417338
/home/guodong.li/code/peft-20230717/src/peft/tuners/p_tuning.py:146:UserWarning:for MLP, the `encoder_num_layers` is ignored. Exactly 2 MLP layers are used.
  warnings.warn(
In [ ]:
model
Out[ ]:
PeftModelForCausalLM(
  (base_model):BloomForCausalLM(
    (transformer):BloomModel(
      (word_embeddings):Embedding(250880, 1024)
      (word_embeddings_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      (h):ModuleList(
        (0):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (1):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (2):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (3):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (4):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (5):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (6):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (7):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (8):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (9):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (10):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (11):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (12):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (13):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (14):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (15):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (16):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (17):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (18):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (19):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (20):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (21):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (22):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
        (23):BloomBlock(
          (input_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (self_attention):BloomAttention(
            (query_key_value):Linear(in_features=1024, out_features=3072, bias=True)
            (dense):Linear(in_features=1024, out_features=1024, bias=True)
            (attention_dropout):Dropout(p=0.0, inplace=False)
          )
          (post_attention_layernorm):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          (mlp):BloomMLP(
            (dense_h_to_4h):Linear(in_features=1024, out_features=4096, bias=True)
            (gelu_impl):BloomGelu()
            (dense_4h_to_h):Linear(in_features=4096, out_features=1024, bias=True)
          )
        )
      )
      (ln_f):LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
    )
    (lm_head):Linear(in_features=1024, out_features=250880, bias=False)
  )
  (prompt_encoder):ModuleDict(
    (default):PromptEncoder(
      (embedding):Embedding(20, 1024)
      (mlp_head):Sequential(
        (0):Linear(in_features=1024, out_features=128, bias=True)
        (1):ReLU()
        (2):Linear(in_features=128, out_features=128, bias=True)
        (3):ReLU()
        (4):Linear(in_features=128, out_features=1024, bias=True)
      )
    )
  )
  (word_embeddings):Embedding(250880, 1024)
)
In [ ]:
model.peft_config
Out[ ]:
{'default':PromptEncoderConfig(peft_type=<PeftType.P_TUNING:'P_TUNING'>, auto_mapping=None, base_model_name_or_path='/data/nfs/llm/model/bloomz-560m', revision=None, task_type=<TaskType.CAUSAL_LM:'CAUSAL_LM'>, inference_mode=False, num_virtual_tokens=20, token_dim=1024, num_transformer_submodules=1, num_attention_heads=16, num_layers=24, encoder_reparameterization_type=<PromptEncoderReparameterizationType.MLP:'MLP'>, encoder_hidden_size=128, encoder_num_layers=2, encoder_dropout=0.0)}

2.4 模型训练¶

模型训练的其余部分均无需更改,当模型训练完成之后,保存高效微调部分的模型权重以供模型推理即可。

In [ ]:
# model
# optimizer and lr scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=0,
    num_training_steps=(len(train_dataloader) * num_epochs),
)
In [ ]:
# training and evaluation
model = model.to(device)

for epoch in range(num_epochs):
    model.train()
    total_loss = 0
    for step, batch in enumerate(tqdm(train_dataloader)):
        batch = {k: v.to(device) for k, v in batch.items()}
        #         print(batch)
        #         print(batch["input_ids"].shape)
        outputs = model(**batch)
        loss = outputs.loss
        total_loss += loss.detach().float()
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()

    model.eval()
    eval_loss = 0
    eval_preds = []
    for step, batch in enumerate(tqdm(eval_dataloader)):
        batch = {k: v.to(device) for k, v in batch.items()}
        with torch.no_grad():
            outputs = model(**batch)
        loss = outputs.loss
        eval_loss += loss.detach().float()
        eval_preds.extend(
            tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
        )

    eval_epoch_loss = eval_loss / len(eval_dataloader)
    eval_ppl = torch.exp(eval_epoch_loss)
    train_epoch_loss = total_loss / len(train_dataloader)
    train_ppl = torch.exp(train_epoch_loss)
    print(f"{epoch=}:{train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
100%|██████████| 7/7 [00:01<00:00,  4.66it/s]
100%|██████████| 7/7 [00:00<00:00, 16.60it/s]
epoch=0:train_ppl=tensor(1.4019e+23, device='cuda:0') train_epoch_loss=tensor(53.2973, device='cuda:0') eval_ppl=tensor(1.5565e+22, device='cuda:0') eval_epoch_loss=tensor(51.0993, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  9.08it/s]
100%|██████████| 7/7 [00:00<00:00, 17.60it/s]
epoch=1:train_ppl=tensor(3.4324e+14, device='cuda:0') train_epoch_loss=tensor(33.4694, device='cuda:0') eval_ppl=tensor(694663.1250, device='cuda:0') eval_epoch_loss=tensor(13.4512, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  9.15it/s]
100%|██████████| 7/7 [00:00<00:00, 17.51it/s]
epoch=2:train_ppl=tensor(594353.6875, device='cuda:0') train_epoch_loss=tensor(13.2952, device='cuda:0') eval_ppl=tensor(450830.4062, device='cuda:0') eval_epoch_loss=tensor(13.0188, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  9.12it/s]
100%|██████████| 7/7 [00:00<00:00, 17.51it/s]
epoch=3:train_ppl=tensor(673112.8125, device='cuda:0') train_epoch_loss=tensor(13.4197, device='cuda:0') eval_ppl=tensor(385877.5938, device='cuda:0') eval_epoch_loss=tensor(12.8633, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  8.92it/s]
100%|██████████| 7/7 [00:00<00:00, 16.12it/s]
epoch=4:train_ppl=tensor(565632.5625, device='cuda:0') train_epoch_loss=tensor(13.2457, device='cuda:0') eval_ppl=tensor(309009., device='cuda:0') eval_epoch_loss=tensor(12.6411, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  8.93it/s]
100%|██████████| 7/7 [00:00<00:00, 17.41it/s]
epoch=5:train_ppl=tensor(428292.1250, device='cuda:0') train_epoch_loss=tensor(12.9676, device='cuda:0') eval_ppl=tensor(264157.9688, device='cuda:0') eval_epoch_loss=tensor(12.4843, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  9.06it/s]
100%|██████████| 7/7 [00:00<00:00, 17.46it/s]
epoch=6:train_ppl=tensor(378711.1875, device='cuda:0') train_epoch_loss=tensor(12.8445, device='cuda:0') eval_ppl=tensor(251440.4219, device='cuda:0') eval_epoch_loss=tensor(12.4350, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  9.17it/s]
100%|██████████| 7/7 [00:00<00:00, 17.47it/s]
epoch=7:train_ppl=tensor(289856.9375, device='cuda:0') train_epoch_loss=tensor(12.5771, device='cuda:0') eval_ppl=tensor(242582.3281, device='cuda:0') eval_epoch_loss=tensor(12.3991, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  9.20it/s]
100%|██████████| 7/7 [00:00<00:00, 15.88it/s]
epoch=8:train_ppl=tensor(348310.9688, device='cuda:0') train_epoch_loss=tensor(12.7609, device='cuda:0') eval_ppl=tensor(234650.7188, device='cuda:0') eval_epoch_loss=tensor(12.3659, device='cuda:0')
100%|██████████| 7/7 [00:00<00:00,  8.99it/s]
100%|██████████| 7/7 [00:00<00:00, 17.26it/s]
epoch=9:train_ppl=tensor(344919.1250, device='cuda:0') train_epoch_loss=tensor(12.7511, device='cuda:0') eval_ppl=tensor(231422.7031, device='cuda:0') eval_epoch_loss=tensor(12.3520, device='cuda:0')

In [ ]:
# 模型评估
model.eval()
i = 16
inputs = tokenizer(f'{text_column} :{dataset["test"][i]["Tweet text"]} Label :', return_tensors="pt")
print(dataset["test"][i]["Tweet text"])
print(inputs)

with torch.no_grad():
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = model.generate(
        input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3
    )
    print(outputs)
    print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
Hey @nytimes your link to cancel my subscription isn't working and nobody is answering the chat. Please don't play that kind of stupid game.
{'input_ids':tensor([[227985,   5484,    915,  54078,   2566,   7782,  24502,   2632,   8989,
            427,  36992,   2670, 140711,  21994,  10789,    530,  88399,    632,
         183542,    368,  44799,     17,  29901,   5926,   7229,    861,  11596,
            461,  78851,  14775,     17,  77658,    915,    210]]), 'attention_mask':tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
tensor([[227985,   5484,    915,  54078,   2566,   7782,  24502,   2632,   8989,
            427,  36992,   2670, 140711,  21994,  10789,    530,  88399,    632,
         183542,    368,  44799,     17,  29901,   5926,   7229,    861,  11596,
            461,  78851,  14775,     17,  77658,    915,    210,   2550,      2,
             36,     17,   1387,  51216,    632,   7220,      2,     36]],
       device='cuda:0')
["Tweet text :Hey @nytimes your link to cancel my subscription isn't working and nobody is answering the chat. Please don't play that kind of stupid game. Label : #A. The weather is goodA"]
In [ ]:
# saving model
peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
print("model_output:", peft_model_id)
model.save_pretrained(peft_model_id)
model_output:/data/nfs/llm/model/bloomz-560m_P_TUNING_CAUSAL_LM

输出的模型权重文件如下所示:

/data/nfs/llm/model/bloomz-560m_P_TUNING_CAUSAL_LM
├── [ 451]  adapter_config.json
├── [ 81K]  adapter_model.bin
└── [ 129]  README.md

0 directories, 3 files

注意:这里只会保存经过训练的增量 PEFT 权重。其中,adapter_config.json 为 P-Tuning 配置文件;adapter_model.bin 为 P-Tuning 权重文件。

In [ ]:
ckpt = f"{peft_model_id}/adapter_model.bin"
!du -h $ckpt
print("--------------")
!tree -h $peft_model_id
huggingface/tokenizers:The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
84K	/data/nfs/llm/model/bloomz-560m_P_TUNING_CAUSAL_LM/adapter_model.bin
--------------
huggingface/tokenizers:The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
	- Avoid using `tokenizers` before the fork if possible
	- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
/data/nfs/llm/model/bloomz-560m_P_TUNING_CAUSAL_LM
├── [ 451]  adapter_config.json
├── [ 81K]  adapter_model.bin
└── [ 129]  README.md

0 directories, 3 files

2.5 加载微调后的权重文件进行推理¶

In [ ]:
from peft import PeftModel, PeftConfig

peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
print("model_input:", peft_model_id)

config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
model_input:/data/nfs/llm/model/bloomz-560m_P_TUNING_CAUSAL_LM
In [ ]:
model.to(device)
model.eval()
i = 4
inputs = tokenizer(f'{text_column} :{dataset["test"][i]["Tweet text"]} Label :', return_tensors="pt")
print(dataset["test"][i]["Tweet text"])
print(inputs)

with torch.no_grad():
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = model.generate(
        input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3
    )
    print(outputs)
    print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
In [ ]: